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Abstract - Shalvi and Weinstein proposed a computa- 
tionally efficient iterative super-exponential algorithm 
(SEA) using higher-order cumulants for blind equaliza- 
tion. For practical situations of finite signal-to-noise 
ratio (SNR) and channels allowed to have zeros on the 
unit circle, it can be shown that the linear equalizer ob- 
tained using the SEA is stable with a nonlinear relation 
to the nonblind minimum mean square error (MMSE) 
equalizer, that it is a perfect phase equalizer for some 
cumulant orders, and that it is the same as the linear 
equalizer associated with Shalvi and Weinstein’s blind 
deconvolution criteria for some cumulant orders. Then 
some simulation results are presented to justify the an- 
alytic results followed by some conclusions. 

is the (combined) overall system after equalization. 
Let cum{q,  ..., xP} denote the pth-order joint cumu- 
lant of random variables 51, . .. , xp and 

cum{e[n] : p ,  ...} = cum{x1 = e[n], ..., xp = e[n], ...}. 

Shalvi and Weinstein [1,2] find the equalizer w[n] by 
maximizing the following criteria: 

where the superscript ‘*’ denotes complex conjugation. 
Shalvi and Weinstein [2,3] also proposed an iterative 
super-exponential algorithm (SEA) for blind equaliza- 
tion. The equalizer associated with Jp,q and the one 
associated with the SEA have been shown to be a zero- 

I. Introduction forcing equalizer (perfect equalization) when signal-to- 
noise ratio (SNR) equals infinity and the channel h[n] 
does not have zeros on the unit circle (i.e., the stable 
inverse filter of h[n] exists). 
In practical applications, however, the SNR is always 
finite and the channel’s zeros may be close to or exactly 

Blind equalization (deconvolution) is a crucial signal 
processing procedure to mitigate the multipath fading 
and noise effects of communication channels with only 
measurements given by 

z[n] = .[n] * h[n] + w[n] 
03 

= h[IC]u[n - IC] +w[n] (1) 
k = - m  

where h[n] is an unknown linear time-invariant (LTI) 
channel, u[n] is the transmitted signal and 4 7 2 1  is ad- 
ditive noise. The linear equalizer, denoted by w[n], has 
been widely used to process z[n] such that 

approximates wu[n - T ]  where (1: is a scale factor and T 

is a time delay, and 
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on the unit circle. Feng and Chi [4,5] recently reported 
performance analyses for the optimum linear equalizer 
associated with Jp,g under these practical conditions, 
including its connection with the nonblind minimum 
mean square error (MMSE) equalizer [6], the stabil- 
ity property and perfect phase equalization property. 
In this paper, the performance of the linear equalizer 
associated with the SEA is analyzed including some 
properties and its relation to the MMSE equalizer and 
the one associated with Jp ,g .  

11. Brief Review of SEA 
Assume that we are given a set of measurements 4.1 
modeled as (1) under the following assumptions: 

( A l )  The channel h[n] is stable (i.e., E, lh[n]1 < 00) 

with frequency response H ( w )  = 0 for w E RZ c 
[ -T,T) ,  i.e., Rz = {wlH(w)  = 0, -T 5 w < T } .  
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(A2) The signal U[.] is a zero-mean, independent iden- 
tically distributed (i.i.d.), non-Gaussian random 
process with variance U; and nonzero cumulant 
pp ,q  = cum{u[n] : p ,  u*[n] : q }  where p + q 2 3. 

(A3) The noise ~ [ n ]  is zero-mean, white Gaussian with 
variance 0% > 0 (finite SNR) and statistically in- 
dependent of U[.]. 

Moreover, the equalizer v[n] is assumed to be an FIR 
filter over the interval L1 5 n 5 Lz with length L = 
L2 - L1 + 1. Let 

v = [v[L1], w[L1 + 11,. . . ,v[L2IlT. 

At the i th iteration, the SEA [2,3,7]  updates v by 

(5) 

where R,, is an L x L correlation matrix of ~ [ n ]  with 
the ( k ,  1)th element given by 

and de, is an L x 1 vector with the kth element given 
by 

[de,]k = cum{ei-l[n] : ~ , e a - ~ [ n ]  : q - 1,x*[n - k ' ] }  
(7)  

in which k' = k + L1 - 1 and 

ei- l[n]  = 4.1 * vi-l[n] (8)  

is the equalized signal obtained at the (i - 1)th itera- 
tion. As the SEA converges, the linear equalizer v[n] 
associated with vi is obtained and e[.] = ei[n] is the 
obtained equalized signal. Let us conclude this section 
with the following remark: 
(Rl) The SEA is computational efficient because of 

its fast convergence (at a super-exponential rate) 
and only computing the linear equations given by 
(5) at each iteration. 

111. Performance Analysis of SEA 
Without confusion, let v[n] denote the linear equalizer 
obtained by the SEA algorithm. It can be easily shown 
that as the SEA converges, the linear equations given 
by (5) without normalization are equivalent to the fol- 
lowing linear equations 

L2 
r,,[k - I ]  . V [ Z ]  = ~ ~ ~ [ k ]  * v[kI 

= cum{e[n] : p ,  e*[n] : q - 1, z*[n - k ] }  
l=L,  
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where 

Let us further assume that L1 = -CO and L2 = 00 

and E, 1v[n]I2 < CCJ for investigating behaviors of w[n] 
based on (9). Taking Fourier transform of both sides of 
(9) with respect to k leads to the following two prop- 
erties. 
Proper ty  1 .  The linear equalizer V(w) is related to  
the noncausal MMSE equalizer VMSE(W) [6] via 

V ( w )  = P . D ( ~ ) ~ M S E ( ~ )  (11) 

where P is  a nonzero constant, D(w)  is the Fourier 
transform of d [ k ]  given by (lo), and 

Proper ty  2. Both v[n] and the associated overall sys- 
t e m  g[n]  are always stable regardless of Rz = 0 or 
Rz # 0 ,  and meanwhile V(w) = G(w) = 0 'dw E Rz. 
Property 1 also implies that  v[n] is usually not a perfect 
amplitude equalizer (i.e., lV(w)l # a/lH(w)l). How- 
ever, it can be a perfect phase equalizer, i.e., 

arg[V(w)] = - arg[H(w)] - WT + K ,  - x 5 w < x 
(13) 

for some choices of p and q as given in the following 
property, where r and K are constants. 
Proper ty  3. The linear equalizer V(w) is  a perfect 
phase equalizer as given by (13) f o r  two cases: (a) x[n] 
is real for all p + q 2 3 and ( b )  x[n] is complex and 
p = q > 2 .  

The Property 3 can be proved by the observation that 
g[n]  and d[n]  have the same phase by (ll), i.e., d[n]  * 
g*[-n] is zero-phase. However, for the case that x[n] 
is complex and p # q ,  we empirically found that V(w) 
can be a perfect phase equalizer for most applications. 
Property 3 also implies that  the choice of p = q = 2 is 
preferable to  other choices of p and q when the SEA is 
employed to  process complex measurements. 
In addition to  the relation between the linear equalizer 
~ [ n ]  associated with the SEA and the MMSE equal- 
izer ' U M S E [ n ]  as presented in Property 1, the former is 
also related to  the linear equalizer, denoted by ~ [ n ] ,  
associated with Jp,q as given in the following fact: 
Fact 1 .  Feng and Chi (5,7] have shown that ~ [ n ]  also 
shares the Property 1 with d [ k ]  different f rom the one 
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given by  (lo), and meanwhile it is a perfect phase equal- 
izer for all p + q > 3 regardless of whether x [ n ]  is real 
or complex. However, for the two cases mentioned in 
Property 3, d [ k ]  2s the same for  both v[n] and v[n], and 
therefore v [ n ]  = av[n - T ]  for these two cases. 
With finite data, the optimum 4.1 of finite length is 
usually obtained through an iterative gradient-type op- 
timization procedure for finding the maximum of the 
highly nonlinear objective function Jp,q.  Fact 1 sug- 
gests an efficient optimization algorithm making use of 
the SEA for finding the optimum 4.1 for the two cases 
presented in Property 3 as follows: 
Algorithm 1;  
At the i th  iteration, v, = [v,[L1], v,[Ll+l], . . . , vz[L2]IT 
is obtained through the following two steps. 

(Tl) Update v, by ( 5 )  that is also equal to aJ,,,/av 
for v = v,-1 [2]. 

v,[n] ,  otherwise update v2[n] through a gradient- 
type optimization optimization with the gradi- 
ent obtained in (Tl ) .  

(T2) If Jp,q(vz[n]) > Jp,q(vz-l[n]), update vz[n] = 

Note that compared with gradient type algorithms, fast 
convergence and significant computational saving of Al- 
gorithm l can be expected because it shares the com- 
putational efficiency of the SEA as mentioned in (Rl) .  
To verify the preceding analytic results, the following 
FFT based iterative algorithm based on Property 1 is 
proposed for obtaining the theoretical (true) v[n],  up to  
a scale factor and a time delay, from h[n] and VMSE(W). 
Algorithm 2 

Set i = 0. Choose an initial guess do] [n] for 4.1. 
Set i = i + 1. Compute ~ [ ~ - ' ] [ n ]  = h[n] * ~ [ ~ - ' ] [ n ]  
by (3) and 

where no = arg max{ Igti-'] [n] 1, V n } .  

Compute d [ n ]  by (10) and its M-point DFT D(wk 
= 27rk/M) using FFT. 

Compute e ( w k )  = D(w~).VMSE(W~) by (11) and 
its M-point inverse DFT G[n] using FFT followed 
by 

If E, Iv[i][n]-v[i-1][n]12 > E (a preassigned toler- 
ance for convergence), then go to  (S2); otherwise, 
the true 74.1 = di][n] is obtained. 
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IV. Simulation Results 

The source signal 4.3 was assumed to  be a 4-QAM sig- 
nal and the channel h[n] = hl[n] * h2[n] taken from [5] 
was used where hl [n] and h2 [n] were causal FIR filters 
with coefficients (1, 0, -1) and (0.04, -0.05, 0.07, - 
0.21, - 0.5, 0.72, 0.36, 0 ,  0.21, 0.03, 0.07}, respec- 
tively. The channel's magnitude response IH(w) I and 
phase response ARG[H(w)] are displayed in Figures 
l(a) and l (b) ,  respectively. Note that phase discon- 
tinuities of 7r at w E R, = (0, -7r )  can be observed due 
to  the two zeros of H ( z )  at z = 51 .  

The synthetic data z[n] were generated for data length 
N = 8000 and SNR= 10 dB (complex white Gaussian 
noise). The equalizer G[n] assumed to  be a thirtieth- 
order ( L  = 31) causal FIR filter was then obtained 
by the SEA with p = q = 2 and Go[n] = S[n - 151. 
Meanwhile the equalizer $In], of the same order as 
G[n] ,  associated with J2,2 was obtained using Algo- 
rithm l and a gradient-type optimization algorithm 
with i&[n] = S[n - 151. Thirty independent runs were 
performed, and then the averages Ga,,,[n] and Ga,,,[n] 
of the obtained 30 estimates 9[n] and $[n] were calcu- 
lated, respectively. On the other hand, the true v[n] 
was obtained using Algorithm 2 with initial condition 
v[O][n] = 6 [ n ] ,  DFT length M = 1024 and 
Real parts, magnitude responses and phase responses 
of the obtained Ga,,[n] (dash lines) and 4.1 (dotted 
lines) are shown in Figures 2(a), 2(b) and 2(c), respec- 
tively, where time delays between Ga,,,[n] and w(n] were 
artificially removed. Their imaginary parts are not dis- 
played since they are almost F ro .  One can see, from 
these figures, that Ga,,,[n] and V,,,(w) are almost indis- 
tinguishable from v[n] and V ( w ) ,  respectively. These 
results verify the preceding Properties 1, 2 and 3 and 
the efficacy of Algorithm 2. 

The simulation results for F[n] obtained using Algo- 
rithm l corresponding to  those for G[n] shown in Fig- 
ures 2(a) through 2(c) are shown in Figures 3(a) through 
3(c), respectively. The results shown in the former and 
those shown in the latter are very close to  each other, 
and thus Fact 1 is justified and Algorithm 1 is effec- 
tive. Moreover, the same results as shown in Figure 
3(a) through 3(c) can also be obtained only using the 
gradient-type algorithm. Figure 3(d) shows the aver- 
age of the thirty J2,2's with respect to  iteration number 
associated with Algorithm 1 (solid line) and that as- 
sociated with the gradient-type algorithm (dash line). 
One can see, from Figure 3(d), that, as expected, much 
faster convergence can be observed for the former. 

= 

. 
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V. Conclusions 
We have presented some analytic results about the per- 
formance of the equalizer 74.1 associated with the SEA 
as the equalizer order and data length are sufficient 
large. These analytic results demonstrate that the SEA 
is applicable for finite SNR regardless of whether the 
channel has zeros on the unit circle or not. This equal- 
izer is stable with a nonlinear relation to the MMSE 
equalizer (see Properties 1 and 2) and capable of per- 
forming perfect phase equalization for the two cases 
mentioned in Property 3. A preferable choice of p and 
q is p = q = 2 (see (7)) as the SEA is employed to pro- 
cess complex measurements. Both the SEA and the 
deconvolution criteria Jp,p given by (4) result in the 
same equalizer for the two cases mentioned in Prop- 
erty 3 as presented in Fact 1. 
An FFT based algorithm, Algorithm 2, was presented 
to obtain the true 4.1 from the channel and MMSE 
equalizer based on Property 1. A fast algorithm mak- 
ing use of the SEA, Algorithm 1, was presented for 
finding the equalizer v[n] associated with Jp,q due to  
Fact 1. Some simulation results were also presented to 
support the analytic results and Algorithms 1 and 2. 

MAGNITUDE RESPONSE OF THE CHANNEL 
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Fig. 1. (a) IH(u)l and (b) ARG[H(u)] of the channel. 
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Fig. 2. Simulation results using the SEA. (a) Real parts, 
(b) magnitude responses and ( c )  phase responses of Ca,,,[n] 
(dash lines) and the true 47x1 (dotted lines). 
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Fig. 3. Simulation results using J 2 . 2 .  (a) Real parts, 
(b) magnitude responses and (c) phase responses of Ca,,,[n] 
(dash lines) and the true v[n] (dotted lines); (d) average 
of thirty J2,2’s associated with Algorithm 1 (solid line) and 
that associated with a gradient-type algorithm (dash line). 
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